Пожароопасные свойства стройматериалов: это необходимо знать. Пожарная безопасность и пожарная профилактика

Подписаться
Вступай в сообщество «export40.ru»!
ВКонтакте:

Обеспечение пожарной безопасности входит в число ключевых задач при строительстве и эксплуатации современных высоток, крупных деловых центров и торгово-развлекательных комплексов. Специфика таких зданий – большая протяженность путей эвакуации – диктует повышенные требования к пожарной безопасности используемых строительных конструкций и материалов. И только когда эти требования соблюдаются наравне с решением других технических и экономических задач, здание считается спроектированным правильно.

Согласно Федеральному закону Российской Федерации от 22 июля 2008 г № 123-ФЗ “Технический регламент о требованиях пожарной безопасности”, выбор строительных материалов напрямую зависит от функционального назначения здания или помещения.

Классификацию строительных материалов часто проводят, основываясь на сфере применения продукции. По этому критерию ее разделяют на конструктивные, изоляционные и отделочные, а также конструктивно-изоляционные и конструктивно-отделочные решения.

С точки зрения пожарной безопасности оптимальная классификация предлагается в Статье 13 “Технического регламента”, которая разбивает строительные материалы на два типа: горючие и негорючие. В свою очередь, горючие материалы делятся на 4 группы – слабогорючие (Г1), умеренно горючие (Г2), нормально горючие (Г3) и, наконец, сильно горючие (Г4).

Кроме того, они оцениваются по таким критериям, как воспламеняемость, способность распространять пламя по поверхности, дымообразующая способность и токсичность. Совокупность этих показателей позволяет присвоить конкретному материалу класс пожарной опасности: от КМ0 - для негорючих материалов до КМ1-КМ5 - для горючих.

Природные свойства материалов

Ключевым фактором, определяющим пожарную опасность материалов, является сырье, из которого они изготовлены. В этой зависимости их можно разделить на три большие группы: неорганические, органические и смешанные. Рассмотрим подробнее свойства каждой из них. Начнем с минеральных материалов, которые принадлежат к группе неорганических и, наравне с металлическими конструкциями, служат для создания жесткого каркаса – основы современных зданий.

Наиболее часто встречающиеся минеральные строительные материалы – это природный камень, бетон, кирпич, керамика, асбоцемент, стекло и т.д. Они относятся к негорючим (НГ), но даже при небольшом добавлении полимерных или органических веществ – не более 5-10% от массы – их свойства меняются. Увеличивается пожарная опасность, и из НГ они переходят в категорию трудносгораемых.

В последние годы широкое распространение получила продукция на основе полимеров, принадлежащая к неорганическим материалам и являющаяся горючей. При этом от объема и химического строения полимера зависит принадлежность конкретного материала к группе горючести. Выделяют два основных типа полимерных соединений. Это реактопласты, образующие при нагревании коксовый слой, который состоит из негорючих веществ и защищает материал от воздействия высоких температур, препятствуя горению. Другой тип – это термопласты (плавятся без создания теплозащитного слоя).

Вне зависимости от типа, полимерные строительные материалы нельзя перевести в разряд негорючих, но возможно снизить их пожарную опасность. Для этого применяются антипирены – различные вещества, которые способствуют повышению огнестойкости. Антипирены для полимерных материалов можно разделить на три большие группы.

В первую входят вещества, осуществляющие химическое взаимодействие с полимером. Эти антипирены применяются преимущественно для реактопластов, без ухудшения их физико-химических свойств. Вторая группа антипиренов – интумесцентные добавки – под воздействием пламени образует на поверхности материала вспененный ячеистый коксовый слой, препятствующий горению. И, наконец, третья группа – это вещества, которые механически смешиваются с полимером. Их используют для снижения горючести как термопластов, так реактопластов и эластомеров.

Из всех органических материалов наибольшее распространение при строительстве современных зданий получила древесина и изделия из нее – древесно-стружечные плиты (ДСП), древесно-волокнистые плиты (ДВП), фанера и т.д. Все органические материалы относятся к группе горючих, а их пожарная опасность повышается при добавлении различных полимеров. Например, лакокрасочные материалы не только повышают горючесть, но и способствуют более быстрому распространению пламени по поверхности, увеличивают дымообразование и токсичность. В этом случае к СО (угарному газу) – основному продукту горения органических материалов – добавляются и другие токсичные вещества.

Для снижения пожарной опасности органических строительных материалов, как и в случае с полимерными веществами, их обрабатывают антипиренами.

Нанесенные на поверхность, под воздействием высоких температур антипирены могут превращаться в пену или выделять негорючий газ. В обоих случаях они затрудняют доступ кислорода, препятствуя возгоранию древесины и распространению пламени. Эффективными антипиренами являются вещества, содержащие диаммоний фосфат, а также смесь фосфорнокислого натрия с сульфатом аммония.

Что касается смешанных материалов, они состоят из органического и неорганического сырья. Как правило, строительная продукция данного типа не выделяется в отдельную категорию, а относится к одной из предыдущих групп, в зависимости от того, какое сырье преобладает. К примеру, фибролит, состоящий из древесных волокон и цемента, считается органическим, а битум – неорганическим. Чаще всего смешанный тип относится к группе горючих продуктов.

Повышенные требования к пожарной безопасности крупных торгово-развлекательных и офисных центров, а также высотных зданий диктуют необходимость разработки комплекса противопожарных мероприятий. Одним из наиболее важных является преимущественное использование негорючих и слабогорючих материалов. В особенности это касается несущих и ограждающих конструкций здания, кровли, а также материалов для отделки путей эвакуации.

Согласно классификации НПБ 244-97, обязательной сертификации в области пожарной безопасности подлежат отделочные, облицовочные, кровельные, гидроизоляционные и теплоизоляционные материалы, а также напольные покрытия. Рассмотрим данные категории на предмет пожарной опасности.

Отделочные и облицовочные материалы

Существует множество отделочных и облицовочных материалов, среди которых можно выделить полистирольные плитки, ПВХ- и ДСП-панели, обои, пленки, керамическую плитку, стеклопластики и т.д. Большинство продукции данного типа относятся к горючей. В помещениях с массовым скоплением людей, а также в зданиях, где эвакуация затруднена из-за большой площади и этажности, отделочные материалы могут создавать дополнительную угрозу жизни и здоровью людей, вызывая задымление, выделяя токсичные продукты горения и способствуя быстрому распространению пламени. Поэтому необходимо выбирать материалы не ниже класса КМ2.

В зависимости от поверхности, на которую они нанесены, отделочные материалы могут иметь различные свойства. К примеру, в сочетании с горючими веществами обычные обои могут проявить себя как легковоспламеняющиеся, а нанесенные на негорючую базу – как слабогорючие. Поэтому при выборе отделочных и облицовочных материалов следует руководствоваться не только данными об их пожарной опасности, но и свойствами оснований.

Для отделки помещений с большим скоплением людей и путей эвакуации недопустимо использование органических продуктов, в частности, МДФ-панелей, которые чаще всего относятся к группам Г3 и Г4. Для отделки стен и потолков в торговых залах нельзя использовать материалы с более высокой пожарной опасностью, чем класс КМ2.

Обои на бумажной основе не входят в список продукции, подлежащей обязательной сертификации, и их можно применять в качестве отделочного материала для помещений с повышенными требованиями к пожарной безопасности с учетом того, что основание будет негорючим.

В качестве замены МДФ-панелям используют гипсокартон с внешним покрытием из декоративной плёнки. Благодаря гипсовой основе гипсокартон относится к негорючим материалам, а декоративная пленка на основе полимеров переводит его в группу Г1, что позволяет применять его для отделки помещений практически любого функционального назначения, включая, вестибюли. Сегодня гипсокартон повсеместно применяется для строительства перегородок - самостоятельных строительных конструкций. Это необходимо учитывать при определении их класса пожарной опасности.

Напольные покрытия

К горючести напольных покрытий предъявляются менее жесткие требования, чем к отделочным и облицовочным материалам. Причина состоит в том, что при пожаре пол находится в зоне наименьшей температуры по сравнению со стенами и потолком. В то же время, для материалов, служащих в качестве напольного покрытия, важную роль играет такой показатель, как распространение пламени по поверхности (РП).

Благодаря удобству монтажа и высоким эксплуатационным характеристикам широкое применение в качестве напольных покрытий в коридорах, вестибюлях, холлах и фойе зданий получили “линолеумы” – различные виды рулонных полимерных покрытий. Практически все материалы такого типа относятся к группе сильно горючих (Г4) и обладают высоким коэффициентом дымообразования. Уже при температуре 300 ОС они поддерживают горение, а при нагреве свыше 450–600 ОС – воспламеняются. Кроме того, в продукты горения линолеумов входят токсичные вещества – двуокись углерода, СО и хлористый водород.

Поэтому их недопустимо использовать в качестве напольного покрытия для коридоров и холлов, где, согласно требованиям, должны применяться материалы не ниже КМ3, не говоря про вестибюли и лестничные клетки, для которых действуют более жесткие требования. То же можно сказать и о ламинате, который состоит из органических и полимерных материалов и, вне зависимости от типа, относится к числу сильно горючих - непригодных для путей эвакуации.

Наиболее благополучными, с точки зрения пожарной безопасности, являются керамическая плитка и керамогранит. Они относятся к группе КМ0 и не входят в перечень материалов, подлежащих сертификации в области пожарной безопасности. Такая продукция подходит для помещений любого функционального назначения. Кроме того, в качестве напольного покрытия в коридорах и холлах можно использовать полужесткие плитки, изготовленные из поливинилхлорида с большим количеством минерального наполнителя (группа КМ1).

Кровельные и гидроизоляционные материалы

Обычно пожароопасность кровельных материалов указана в сертификатах в виде группы горючести. Наименьшей опасностью отличаются кровли из металла и глины, а наибольшей – материалы на основе битумов, каучуков, резинобитумных продуктов и термопластичных полимеров. Хотя именно они придают кровельным материалам высокие эксплуатационные характеристики – водо- и паронепроницаемость, морозостойкость, эластичность, стойкость к негативным атмосферным воздействиям и образованию трещин.

Одними из наиболее пожароопасных являются кровельные и гидроизоляционные материалы, в состав которых входят битумы. Они самовоспламеняются уже при температуре 230-300ОС. Кроме того, битум обладает высокой дымообразующей способностью и скоростью горения.

Битумы широко применяются в производстве рулонных (рубероид, пергамин, стеклорубероид, изол, гидроизол, фольгоизол) и мастичных кровельных и гидроизоляционных материалов. Практически все кровельные материалы на основе битума относятся к группе Г4. Это накладывает ограничения на их использование в зданиях с повышенными требованиями к пожарной безопасности. Так, они должны укладываться на негорючее основание. Кроме того, поверх осуществляется гравийная засыпка, а также устраиваются противопожарные рассечки, разделяющие кровлю здания на отдельные сегменты. Это необходимо для того, чтобы локализовать возгорание и воспрепятствовать распространению пожара.

Сегодня на рынке представлены десятки видов гидроизоляционных материалов – полиэтиленовые, полипропиленовые, поливинилхлоридные, полиамидные, тиоколовые и другие мембраны. Вне зависимости от вида, все они относятся к группе горючих. Наиболее благополучными, с точки зрения пожарной безопасности, являются гидроизоляционные мембраны, относящиеся к группе горючести Г2. Как правило, это материалы на основе поливинилхлорида с добавлением антипиренов.

Теплоизоляционные материалы

Теплоизоляционные материалы, подлежащие сертификации в области пожарной безопасности, можно разделить на пять групп. Первая из них – пенополистиролы. Благодаря сравнительно низкой стоимости они получили широкое распространение в современном строительстве. Наряду с хорошими теплоизолирующими свойствами эта продукция обладает рядом серьёзных недостатков, в числе которых недолговечность, недостаточная влагостойкость и паропроницаемость, низкая стойкость к воздействию ультрафиолетовых лучей и углеводородных жидкостей, а главное – высокая горючесть и выделение при горении токсичных веществ.

Одной из разновидностей пенополистиролов является экструдированный пенополистирол. Он имеет более упорядоченную структуру из мелких закрытых пор.

Такая технология производства повышает влагостойкость материала, но не снижает его пожарную опасность, которая остается столь же высокой. Воспламенение пенополистиролов происходит при температуре от 220 до 380 ОС, а самовоспламенение соответствует температуре 460-480 ОС. При горении пенополистиролы выделяют большое количество тепла, а также токсичные продукты. Вне зависимости от вида, все материалы данной категории относятся к группе горючести Г4.

В качестве теплоизоляции в составе штукатурных фасадных систем пенополистирол рекомендуется устанавливать с обязательным устройством противопожарных рассечек из каменной ваты – негорючего материала. Из-за высокой пожарной опасности применение материалов этой группы недопустимо в вентилируемых фасадных системах, так как они могут существенно повысить скорость распространения пламени по фасаду здания. При использовании комбинированных кровельных покрытий пенополистирол укладывается на негорючее основание из каменной ваты.

Следующий вид теплоизоляционного материала – пенополиуретан – представляет собой неплавкую термореактивную пластмассу с ячеистой структурой, пустоты и поры которой заполнены газом с низкой теплопроводностью. Из-за невысокой температуры воспламенения (от 325 ОС), сильной дымообразующей способности, а также высокой токсичности продуктов горения, в число которых входит цианистый водород (синильная кислота), пенополиуретан обладает повышенной пожарной опасностью. При производстве пенополиуретана активно применяются антипирены, которые позволяют снизить воспламеняемость, но, вместе с тем, повышают токсичность продуктов горения. В целом, использование пенополиуретана в зданиях с повышенными требованиями к пожарной безопасности сильно ограничено. При необходимости его можно заменить двухкомпонентным материалом - пенополиизоциануратом, который обладает более низкой воспламеняемостью и горючестью.

Резольные пенопласты, изготовленные из резольных фенолформальдегидных смол, относятся к группе трудногорючих. В виде плит средней плотности они применяются для теплоизоляции наружных ограждений, фундаментов и перегородок при температуре поверхности не выше 130 ОС. Под воздействием пламени резольные пенопласты обугливаются, сохраняя в целом свою форму, и обладают малой дымообразующей способностью по сравнению пенополистиролом. Одним из главных недостатков данной категории материалов является то, что при деструкции они выделяют набор высокотоксичных соединений, в который, помимо угарного газа, входит формальдегид, фенол, аммиак и другие вещества, представляющие непосредственную угрозу жизни и здоровью людей.

Еще один вид теплоизоляции – стекловата, для производства которой используется те же материалы, что и при изготовлении стекла, а также отходы стекольной промышленности. Стекловата обладает хорошими теплотехническими характеристиками, а температура её плавления составляет порядка 500 ОС. Однако в силу некоторых особенностей к группе НГ относится теплоизоляция плотностью менее 40 кг/м3.

В перечень теплоизоляционных материалов входит каменная вата, которая состоит из волокон, получаемых их каменной породы базальтовой группы. Каменная вата обладает высокими тепло- и звукоизоляционными характеристиками, стойкостью к нагрузкам и различным видам воздействия и долговечностью. Материалы данной группы не выделяют вредных веществ и не оказывают негативного воздействия на окружающую среду. Каменная вата – наиболее надёжный материал с точки зрения пожарной безопасности: она является негорючей и имеет класс пожарной опасности КМ0. Волокна каменной ваты способны выдерживать температуру до 1000°C, благодаря чему материал эффективно препятствует распространению пламени. Теплоизоляция из каменной ваты может применяться без ограничения в этажности здания.

Оценка пожароопасности теплоизоляции проводилась в рамках специализированных семинаров, организованных ВНИИПО МЧС. Они сопровождались натурными огневыми испытаниями, в которых участвовали распространенные виды теплоизоляционных материалов – пенополистирол, пенополиуретан, резольный пенопласт и каменная вата. Под воздействием открытого пламени горелки пенополистирол расплавился с образованием горящих капель в течение первой минуты эксперимента, пенополиуретан сгорел в течение 10 минут. За 30 минут испытания резольный пенопласт обуглился, а каменная вата не изменила своей первоначальной формы, доказав свою принадлежность к негорючим материалам.

Вторая часть испытаний – имитации возгорания кровли с теплоизоляционным слоем – показала, что горящий расплав пенополистирола, проникая во внутренние помещения, способствует распространению пожара и возникновению новых очагов возгорания. Таким образом, по результатам испытаний были сделаны выводы о высокой пожарной опасности наиболее часто используемых теплоизоляционных материалов.

Подводя итоги, необходимо ещё раз отметить важность эффективных противопожарных мероприятий в процессе проектирования и строительства зданий. Одно из центральных мест занимают оценка пожарной опасности и грамотный выбор строительных материалов, основанный на действующих нормах и стандартах и учитывающий функциональное назначение и индивидуальные особенности здания. Применение современных материалов позволяет обеспечить полное соответствие требованиям пожарной безопасности, гарантируя сохранность жизни и здоровья людям, которые будут находиться в здании после завершения строительства.

Роман Ильягуев

Пресс-служба компании ROCKWOOL Russia

При получении веществ и материалов, применении, хранении, транспортировании, переработке и утилизации.

Для установления требований пожарной безопасности к конструкции зданий, сооружений и системам противопожарной защиты используется классификация строительных материалов по пожарной опасности.

Показатели пожаровзрывоопасности и пожарной опасности веществ и материалов

Перечень показателей, необходимых для оценки пожаровзрывоопасности и пожарной опасности веществ и материалов в зависимости от их агрегатного состояния, приведен в таблице 1 приложения к Федеральному закону ФЗ-123 («Технический регламент о пожарной безопасности»).

Методы определения показателей пожаровзрывоопасности и пожарной опасности веществ и материалов, устанавливаются нормативными документами по пожарной безопасности.

Показатели пожаровзрывоопасности и пожарной опасности веществ и материалов используются для установления требований к применению веществ и материалов и расчета пожарного риска.

Перечень показателей, необходимых для оценки пожарной опасности веществ и материалов в зависимости от их агрегатного состояния
Показатель пожарной опасности Вещества и материалы в различном агрегатном состоянии Пыли
газообразные жидкие твердые
Безопасный экспериментальный максимальный зазор ,
миллиметр
+ + - +
Выделение токсичных продуктов горения с единицы массы горючего,
килограмм на килограмм
- + + -
Группа воспламеняемости - - + -
Группа горючести + + + +
Группа распространения пламени - - + -
Коэффициент дымообразования, квадратный метр на килограмм - + + -
Излучающая способность пламени + + + +
Индекс пожаровзрывоопасности,
Паскаль на метр в секунду
- - - +
Индекс распространения пламени - - + -
Кислородный индекс, объемные проценты - - + -
Концентрационные пределы распространения пламени (воспламенения) в газах и парах, объемные проценты, пылях,
килограмм на кубический метр
+ + - +
Концентрационный предел диффузионного горения газовых смесей в воздухе,
объемные проценты
+ + - -
Критическая поверхностная плотность теплового потока,
Ватт на квадратный метр
- + + -
Линейная скорость распространения пламени,
метр в секунду
- - + -
Максимальная скорость распространения пламени вдоль поверхности горючей жидкости,
метр в секунду
- + - -
Максимальное давление взрыва,
Паскаль
+ + - +
Минимальная флегматизирующая концентрация газообразного флегматизатора,
объемные проценты
+ + - +
Минимальная энергия зажигания,
Джоуль
+ + - +
Минимальное взрывоопасное содержание кислорода,
объемные проценты
+ + - +
Низшая рабочая теплота сгорания,
килоДжоуль на килограмм
+ + + -
Нормальная скорость распространения пламени,
метр в секунду
+ + - -
Показатель токсичности продуктов горения,
грамм на кубический метр
+ + + +
Потребление кислорода на единицу массы горючего,
килограмм на килограмм
- + + -
Предельная скорость срыва диффузионного факела,
метр в секунду
+ + - -
Скорость нарастания давления взрыва,
мегаПаскаль в секунду
+ + - +
Способность гореть при взаимодействии с водой, кислородом воздуха и другими веществами + + + +
Способность к воспламенению при адиабатическом сжатии + + - -
Способность к самовозгоранию - - + +
Способность к экзотермическому разложению + + + +
Температура воспламенения ,
градус Цельсия
- + + +
Температура вспышки ,
градус Цельсия
- + - -
Температура самовоспламенения ,
градус Цельсия
+ + + +
Температура тления ,
градус Цельсия
- - + +
Температурные пределы распространения пламени (воспламенения),
градус Цельсия
- + - -
Удельная массовая скорость выгорания ,
килограмм в секунду на квадратный метр
- + + -
Удельная теплота сгорания ,
Джоуль на килограмм
+ + + +

Классификация веществ и материалов (за исключением строительных, текстильных и кожевенных материалов ) по пожарной опасности

Классификация веществ и материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара или взрыва.

По горючести вещества и материалы подразделяются на следующие группы:
1) негорючие - вещества и материалы, неспособные гореть в воздухе. Негорючие вещества могут быть пожаровзрывоопасными (например, окислители или вещества, выделяющие горючие продукты при взаимодействии с водой, кислородом воздуха или друг с другом);
2) трудногорючие - вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но неспособные самостоятельно гореть после его удаления;
3) горючие - вещества и материалы, способные самовозгораться, а также возгораться под воздействием источника зажигания и самостоятельно гореть после его удаления.

Методы испытаний на горючесть веществ и материалов устанавливаются нормативными документами по пожарной безопасности .

Классификация строительных, текстильных и кожевенных материалов по пожарной опасности

Классификация строительных, текстильных и кожевенных материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара.

Пожарная опасность строительных, текстильных и кожевенных материалов характеризуется следующими свойствами:
1) горючесть ;
2) воспламеняемость ;
3) способность распространения пламени по поверхности ;
4) дымообразующая способность ;
5) токсичность продуктов горения .

Скорость распространения пламени по поверхности

По скорости распространения пламени по поверхности горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:

1) нераспространяющие (РП1) , имеющие величину критической поверхностной плотности теплового потока более 11 киловатт на квадратный метр;

2) слабораспространяющие (РП2) , имеющие величину критической поверхностной плотности теплового потока не менее 8, но не более 11 киловатт на квадратный метр;

3) умереннораспространяющие (РП3) , имеющие величину критической поверхностной плотности теплового потока не менее 5, но не более 8 киловатт на квадратный метр;

4) сильнораспространяющие (РП4) , имеющие величину критической поверхностной плотности теплового потока менее 5 киловатт на квадратный метр ..

Дымообразующая способность

По дымообразующей способности горючие строительные материалы в зависимости от значения коэффициента дымообразования подразделяются на следующие группы:

1) с малой дымообразующей способностью (Д1) , имеющие коэффициент дымообразования менее 50 квадратных метров на килограмм;

2) с умеренной дымообразующей способностью (Д2) , имеющие коэффициент дымообразования не менее 50, но не более 500 квадратных метров на килограмм;

3) с высокой дымообразующей способностью (Д3) , имеющие коэффициент дымообразования более 500 квадратных метров на килограмм ..

Токсичность

По токсичности продуктов горения горючие строительные материалы подразделяются на следующие группы в соответствии с таблицей 2 приложения к Федеральному закону №123-ФЗ:

1) малоопасные (Т1) ;
2) умеренноопасные (Т2) ;
3) высокоопасные (Т3) ;
4) чрезвычайно опасные (Т4) .

Классификация горючих строительных материалов по значению показателя токсичности продуктов горения
Класс опасности Показатель токсичности продуктов горения в зависимости от времени экспозиции
5 минут 15 минут 30 минут 60 минут
Малоопасные более 210 более 150 более 120 более 90
Умеренноопасные более 70, но не более 210 более 50, но не более 150 более 40, но не более 120 более 30, но не более 90
Высокоопасные более 25, но не более 70 более 17, но не более 50 более 13, но не более 40 более 10, но не более 30
Чрезвычайно опасные не более 25 не более 17 не более 13 не более 10

Классификация отдельных видов веществ и материалов

Для напольных ковровых покрытий группа горючести не определяется.

Текстильные и кожевенные материалы по воспламеняемости подразделяются на легковоспламеняемые и трудновоспламеняемые. Ткань (нетканое полотно) классифицируется как легковоспламеняемый материал, если при испытаниях выполняются следующие условия:

1) время пламенного горения любого из образцов, испытанных при зажигании с поверхности, составляет более 5 секунд;

2) любой из образцов, испытанных при зажигании с поверхности, прогорает до одной из его кромок;

3) хлопчатобумажная вата загорается под любым из испытываемых образцов;

4) поверхностная вспышка любого из образцов распространяется более чем на 100 миллиметров от точки зажигания с поверхности или кромки;

5) средняя длина обугливающегося участка любого из образцов, испытанных при воздействии пламени с поверхности или кромки, составляет более 150 миллиметров.

Для классификации строительных, текстильных и кожевенных материалов следует применять значение индекса распространения пламени (I) - условного безразмерного показателя, характеризующего способность материалов или веществ воспламеняться, распространять пламя по поверхности и выделять тепло. По распространению пламени материалы подразделяются на следующие группы:

1) не распространяющие пламя по поверхности, имеющие индекс распространения пламени 0;

2) медленно распространяющие пламя по поверхности, имеющие индекс распространения пламени не более 20;

3) быстро распространяющие пламя по поверхности, имеющие индекс распространения пламени более 20.

Методы испытаний по определению классификационных показателей пожарной опасности строительных, текстильных и кожевенных материалов устанавливаются нормативными документами по пожарной безопасности

Пожарная безопасность и пожарная профилактика

В соответствии с Указом Президента Российской Федерации от 9 ноября 2001 г. № 1309 «О совершенствовании государственного управления в области пожарной безопасности» Государственная противопожарная служба передана из МВД России в МЧС России. В связи с передачей функций противопожарной службы в МЧС России данное министерство осуществляет и государственный пожарный надзор в стране.


В соответствии с федеральным законодательством пожарная охрана подразделяется на следующие виды:

  1. Государственная противопожарная служба;
  2. муниципальная пожарная охрана;
  3. ведомственная пожарная охрана;
  4. частная пожарная охрана;
  5. добровольная пожарная охрана.

Причины возникновения пожаров на АТП

Пожар — неконтролируемое горение вне специального очага, наносящее материальный ущерб. Крупные пожары нередко принимают характер стихийного бедствия и сопровождаются несчастными случаями с людьми. Особенно опасны пожары в местах хранения легковоспламеняющихся и горючих жидкостей и газов.


Основными причинами возникновения пожаров на АТП являются:

  1. неосторожное обращение с огнем;
  2. нарушение правил пожарной безопасности при сварочных и других огневых работах;
  3. нарушение правил эксплуатации электрооборудования;
  4. неисправность отопительных приборов;
  5. неправильное устройство термических печей;
  6. нарушение режима эксплуатации устройств для подогрева автомобилей;
  7. нарушение правил пожарной безопасности при аккумуляторных и окрасочных рабатах;
  8. самовозгорание промасленных обтирочных материалов, пропитанных маслом; статическое и атмосферное электричество и др.

При эксплуатации подвижного состава наиболее частыми причинами возникновения пожаров являются:

  1. неисправность электрооборудования автомобиля;
  2. негерметичность системы питания; скопление на двигателе грязи и масла; применение легковоспламеняющихся и горючих жидкостей для мойки двигателя; подача топлива самотеком;
  3. курение в непосредственной близости от системы питания, применение открытого огня для подогрева двигателя или определения и устранения неисправностей механизмов;
  4. нарушение герметичности газового оборудования на газобаллонном автомобиле и т. д.

Строительные материалы и конструкции, характеристики их пожарной опасности

Возникновение пожаров в зданиях и сооружениях, распространение огня в них в значительной степени зависят от пожароопасных свойств конструкций и материалов, от особенностей технологического процесса. Для оценки пожарной опасности строительных материалов и конструкций важно знать такие их свойства, как возгораемость и огнестойкость. Согласно СНиП П-2 «Противопожарные нормы проектирования зданий и сооружений. Нормы проектирования» строительные материалы по возгораемости подразделяются на три группы: сгораемые, трудносгораемые и несгораемые. Группы возгораемости строительных материалов устанавливаются стандартом СЭВ 383—76 и определяются по стандартам СЭВ 382—7G и СЭВ 2437—80.


К сгораемым относятся материалы, которые под воздействием огня или высокой температуры воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня (древесина, толь, войлок и т. п.).


К трудносгораемым относятся материалы, которые под воздействием огня или высокой температуры воспламеняются, тлеют или обугливаются и продолжают гореть или тлеть только в присутствии источника огня, а после удаления источника огня горение и тление прекращается. Трудносгораемые материалы состоят из несгораемых и сгораемых составляющих, например асфальтовый бетон, гипсовые и бетонные материалы, содержащие более 8 % (массовых) органического наполнителя, цементный фибролит, древесину, подвергнутую глубокой пропитке антипи-ренами, и т. п.


К несгораемым относятся материалы, которые под воздействием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются. К ним относятся все естественные и искусственные неорганические материалы, гипсовые и бетонные материалы, содержащие до 8 % (массовых) органического наполнителя, минераловатные плиты на синтетическом, крахмальном или битумном связывающем при содержании его до 6 % (массовых) и т. п.


Огнестойкость, т. е. способность строительной конструкции сопротивляться воздействию высокой температуры в условиях пожара и сохранять при этом свои эксплуатационные функции, характеризуется пределом огнестойкости. Предел огнестойкости строительных конструкций и элементов определяют промежутком времени в часах от начала испытания на огнестойкость до появления одного из следующих признаков:


образования в конструкции сквозных трещин или сквозных отверстий, через которые проникают продукты сгорания или пламя; на 140 °С или в любой точке этой поверхности больше чем на 180 °С по сравнению с температурой конструкции до испытания или больше чем на 220 °С независимо от температуры конструкции до испытания;


потери конструкцией несущей способности, т. е. обрушения.


По огнестойкости строительные конструкции подразделяют на пять степеней — I—V. Огнестойкость зданий и сооружений определяется степенью огнестойкости их основных конструктивных элементов. Важным свойством строительных конструкций является также их способность сопротивляться распространению огня, которая характеризуется пределом распространения огня (табл. 3.14).


Таблица 3.14. Минимальные пределы огнестойкости и максимальные пределы распространения огня по строительным конструкциям



Расстояния от площадок для хранения автомобилей до зданий и сооружений АТП должны выбираться в соответствии с требованиями СНиП П—93 «Предприятия по обслуживанию автомобилей» и в зависимости от характеристики зданий и сооружений принимаются следующими, м:


Здания и сооружения I и II степеней огнестойкости со стороны стены


без проемов — Не нормируются


То же, со стороны стен с проемами — 9


Здания и сооружения III степени огнестойкости со стороны стен без проемов — 6


То же, со стороны стен с проемами, здания и сооружения IV и V степеней огнестойкости (независимо от наличия проемов в стенах) — 12


Раздаточные колонки нефтепродуктов — 6


Подземные резервуары для нефтепродуктов — 9


Правильно выбранные расстояния позволяют обеспечить одно из необходимых условий пожарной безопасности.


Противопожарные преграды ограничивают распространение пожара из одной части здания или сооружения в другую. К ним относятся противопожарные стены, перегородки, перекрытия, двери, ворота, люки, тамбур-шлюзы, окна, разрывы.


Противопожарные стены должны опираться на фундамент или фундаментные балки и возводиться на всю высоту здания. Они должны возвышаться над кровлей на 60 см, если хотя бы один из элементов покрытия, за исключением кровли, или несущие конструкции крыши выполнены из сгораемых материалов, и на 30 см, если все элементы покрытия, за исключением кровли, или несущие конструкции крыши выполнены из трудносгораемых и несгораемых материалов.


Противопожарные стены могут и не возвышаться над кровлей, если все элементы покрытия и крыши, за исключением кровли, выполнены из несгораемых материалов. Кроме того, в зданиях с наружными стенами из сгораемых или трудносгораемых материалов противопожарные стены должны выступать за плоскость наружных стен, за карнизы и свесы крыш на 30 см.


Наружные стены из профилированных материалов (металлических листов или асбестоцементных панелей с утеплителем из сгораемых или трудносгораемых материалов или с ленточным остеклением) противопожарные стены должны разделять, не выступая за наружную плоскость стены.


В противопожарных стенах допускается устройство вентиляционных и дымовых каналов. При этом в местах их размещения предел огнестойкости противопожарной стены с каждой стороны канала должен быть не менее 2,5 ч.


Противопожарные стены и перегородки ограничивают распространение пожара по горизонтали. Для ограничения распространения пожара по вертикали устраивают противопожарные перекрытия. Они должны быть без проемов и отверстий, через которые могут проникать продукты горения при пожаре, и примыкать к глухим (без остекления) участкам наружных стен.


Во избежание распространения пожара с одного здания на другое между зданиями и сооружениями необходимо устраивать противопожарные разрывы, которые определяются в соответствии со СНиП 11—89 «Генеральные планы промышленных предприятий. Нормы проектирования» в зависимости от степени огнестойкости этих сооружений (табл. 3.15).


Таблица 3.15. Наименьшие расстояния между производственными зданиями и сооружениями промышленных предприятий


1 Расстояние уменьшается до 6 м, если здания и сооружения оборудуют стационарными автоматическими системами пожаротушения; здания и сооружения оборудуют автоматической пожарной сигнализацией; удельная загрузка горючими веществами в зданиях менее или равна 10 кг на 1 м2 площади этажа.


За ширину разрыва между зданиями и сооружениями принимают расстояние в свету между наружными стенами или конструкциями. Ширину разрыва увеличивают на размер выступа конструктивных или архитектурных частей здания, если они выполнены из сгораемых материалов и равны 1 м и более.

Часто при прочтении подобных заголовков возникает первая «Не хочется читать, тема не самая приятная и дай Бог, чтобы пожара никогда не было». Однако такая тема вовсе не говорит только о том, как могут себя вести во время пожара те или иные конструкции. Подобная информация предупреждает о возможном риске и позволяет построить свой дом с тем расчетом, чтобы он был максимально защищен от пожара и заодно защищал Вас.

Категории материалов по степени возгораемости

Что же стоит выделить первым? Очевидно, это категории, на которые материалы делятся по степени возгораемости. Всего их три:

  1. Негорючие – они не подвергаются воздействию огня, то есть не горят, не обугливаются и не тлеют.
  2. Трудногорючие – могут тлеть и обугливаться и делать это вплоть до того момента, пока рядом находится источник открытого огня.
  3. Горючие – возгораются и тлеют под воздействием огня и делают это даже после того, как источник будет ликвидирован.


Те стройматериалы , которые получены путем неорганического происхождения, считаются материалами, относящимися ко второй группе, то есть негорючим. К ним относят:

Природные материалы вроде камня, песка, гранита , бута, мрамора, гравия, известняка и других.

Искусственные материалы – это и глиняный полнотелый кирпич после обжига. Он также может быть пустотелым и пористопустотелым. Легкий кирпич, который имеет выгорающие добавки, являющиеся легкоземельными. Камни из керамики (пустотелые). Силикатный кирпич, который не прошел стадию обжига. Блоки, а также камни, которые изготавливаются из тяжелых и легких бетонов и могут быть как сплошными, так и пустотелыми. Стеновые камни, которые сделаны из смеси грунта и бетона, а также изделия для облицовки и архитектурные элементы.

Надежный камень

Во время пожара части конструкции, сделанные из натурального или искусственного камней показывают свои лучшие качества и являются воплощением надежности.


Главное требование, которое предъявляется к стенам и перегородкам из натурального и искусственного камня – это газонепроницаемость. Если каменная или кирпичная кладка прочная и не содержит щелей, она является прекрасным заграждением с противопожарной точки зрения. Во время обрушения перекрытий, частичных или полных, нагрузка на стены и перегородки становится другой.

Металл является таким же востребованным материалом, как и камень. Однако проигрывает в сравнении с ним по степени огнестойкости. Через пятнадцать минут после начала воздействия прямого огня происходит изменения, касающиеся степени упругости металлических изделий, а также их текучести. Это приводит к изменению состояния сжатого стержня.

Сочетание свойств

Трудногорючие материалы сочетают в себе свойства как горючих, так и не горючих. Из них строят здания с заданными параметрами. К таковым относят огнестойкость, устойчивость к воздействию агрессивной среды, звукотеплопроводность, сжатие и другие.

К трудногорючим относят бетон, применяемый для асфальтирования, а также материалы, содержащие бетон с небольшим содержанием органического заполнителя, и материалы, содержащие гипс. Также сюда относят материалы их из различных полимеров и древесину, которая прошла обработку антипиренами. Войлок, который вымачивали в глиняном растворе, цементный фибролит и другие.

Что хорошо горит и как это защитить

К горючим материалам, которые имеют органическое происхождение, причисляют ДСП, торфяные плиты, древесину, пенопласт, линолеум, резину и т.д. У пластмасс есть очень большой недостаток – при горении они выделяют запахи, которые являются продуктами термического распада и крайне вредны для здоровья.

Для того, чтобы повысить степень огнестойкости изделий из древесины и пластмасс, применяют различные защитные меры. Древесину тщательно обрабатывают антипиренами, а в состав пластмасс вводят добавки, которые снижают степень горючести изделий.

Как достигается огнестойкость

Огнестойкость – важный параметр, которому нужно уделить особе внимание. Он говорит о том, в течение какого времени материал может выстоять при воздействии высоких температур. Однако стоит отметить, что помимо огня на конструкцию оказывают существенное воздействие эксплуатационный нагрузки, а также напор струй воды, количество воды, находящейся в статическом положении, и падающие конструкции. Для того, чтобы определить степень огнестойкости того или иного материала, его подвергают воздействию температур в пределах от 550 до 1200 градусов, поскольку именно такие температуры возникают в условиях пожара.

Элементы здания и их степень их пожароопасности

Теперь самое время перейти к рассмотрению различных частей зданий и степени их пожароопасности.


Фундамент – является подземной частью здания, его основанием. Именно он воспринимает всю нагрузку от конструкций здания. К нему не предъявляют каких-либо противопожарных требований, поскольку фундамент делается из таких материалов, предел огнестойкости которых значительно выше, чем у стен и перекрытий.

Стена выполняет функции не только несущие, но и ограждающие. Она передает все воспринимаемые нагрузки на фундамент и сама оказывает на него давление. Стены делятся на внутренние и наружные, продольные и поперечные. Именно несущие стены воспринимают давление, передавая его на фундамент.

Цоколь – является частью наружной стены. Он немного выступает из плоскости стены и выглядит как постамент, на котором она покоится. Выполняет функцию защиты стены от механических повреждений.

Карниз представляет собой горизонтальный выступ, который либо находится в верхней части стены, заканчивая ее, либо располагается над оконными и дверными проемами. Он отводит воду, которая стекает с крыши здания, чтобы она не попадала на стену, окно или дверь.

Ниша – углубление в стене, которое используется либо для размещения встроенного или стенного шкафа, а также для приборов, отапливающих помещение, и для различных декоративных целей.

Парапет – это небольшая стенка, которая идет по краю крыши. Сейчас эта стенка заменяется металлическими перилами, которые также называют парапетом.

Балкон – открытая площадка с ограждениями, которая выдается из плоскости стены. Лоджия является частью помещения и открыта по фасаду. Балконы с лоджиями являются не только полезной площадью и украшением здания, но также защищают от дыма и огня при пожаре. Кроме того, они служат как пути эвакуации для людей, а также помогают пожарным добраться до места возгорания.

Противопожарная стена – отделяет отсеки для того, чтобы предотвратить распространение пожара. Также они отделяют помещения с горючими и негорючими конструкциями. Такие стены исполняют только из материалов, не подверженных горению.

ПРОКЛАДКА КАБЕЛЯ
С ИЗОЛЯЦИЕЙ ИЗ СШИТОГОПОЛИЭТИЛЕНА

При подготовке материалов использовались«Рекомендации по прокладке и монтажу кабелей с изоляцией из сшитого полиэтиленана напряжение 10, 20 и 35 кВ» (информация с сайта RusCable .Ru ) с учетом других данных по кабелю изсшитого полиэтилена.

1. Основные положения

Любое предприятие, эксплуатирующее электрическиесети напряжением 6-10 кВ и выше, используют силовые кабели.

Кабельные линии имеютогромное преимущество перед воздушными линиями, так как занимают меньше места,безопасны, надежней и удобней в эксплуатации.

Подавляющеебольшинство применяемых в России и странах СНГ кабелей - с пропитанной бумажнойизоляцией (ПБИ), имеют многочисленные недостатки:

Высокая повреждаемость;

Ограничения по нагрузочной способности;

Ограничения по разности уровней прокладки;

Низкая технологичность монтажа муфт.

В настоящеевремя, учитывая вышеперечисленные недостатки, кабели с бумажной изоляцией активнозамещаются кабелями с изоляцией из сшитого полиэтилена.

Ведущиеэнергосистемы страны при строительстве новых кабельных линий или ремонтесуществующих активно используют кабели с изоляцией из сшитого полиэтилена.

Переход откабелей с бумажной пропитанной изоляцией (БПИ) к кабелям с изоляцией из сшитогополиэтилена (СПЭ), связан с все возрастающими требованиями эксплуатирующихорганизаций к техническим параметрам кабелей. В этом отношении преимуществакабелей из СПЭ очевидны.

В таблице (по даннымГРУППЫ КОМПАНИЙ «Форум Электро»), приводятся основные показатели кабелясреднего напряжения:

Основные показатели

Вид изоляции кабеля

пропитанная бумажная

сшитый полиэтилен

1 Длительно допустимая рабочая температура, ° С

2. Температура при перегрузках, °С

3. Стойкость к токам КЗ, ° С

4. Нагрузочная способность, %

При прокладке в земле

При прокладке в воздухе

5. Разность уровней при прокладке, м

не менее 15

без ограничения

6. Трудоемкость при монтаже и ремонте

высокая

низкая

7. Показатели надежности- удельная повреждаемость, -шт./100 км год

В свинцовых оболочках

около 6 *

В алюминиевых оболочках

около 17 *

в 10-15 раз ниже

_______________

* по данным МКС«Мосэнерго», А.С. Свистунов. Направление работ по развитию.

Преимуществамикабеля из сшитого полиэтилена являются:

Более высокая надежность в эксплуатации;

Увеличение рабочейтемпературы жил кабеля с изоляцией из СПЭ до 90 °С, что обеспечивает большуюпропускную способность кабеля;

Твердаяизоляция, позволяющая прокладывать кабель с изоляцией из СПЭ на участках сбольшим перепадом высот, в т.ч. вертикальных и наклонных коллекторах;

Использованиеполимерных материалов для изоляции и оболочки, обеспечивающих возможностьпрокладки кабеля из СПЭ без предварительного подогрева при температурах до –20 °С;

Меньший вес,диаметр и радиус изгиба кабеля, что облегчает прокладку на сложных трассах;

Низкоевлагопоглощение;

Удельнаяповреждаемость кабеля с изоляцией из СПЭ на 1-2 порядка ниже, чем у кабеля сбумажной пропитанной изоляцией;

Высокий токтермической устойчивости при коротком замыкании;

Изоляционныйматериал позволяет сократить диэлектрические потери в кабеле;

Большиестроительные длины кабеля;

меньшие расходына реконструкцию и содержание кабельных линий;

Болееэкологичный монтаж и эксплуатация (отсутствие свинца, масла, битума);

Увеличениесрока службы кабеля.

Применениекабелей с изоляцией из СПЭ на напряжение 6-10 кВ позволяет решить многиепроблемы по надежности электроснабжения, оптимизировать, а в некоторых случаяхдаже изменить традиционные схемы сетей.

В настоящеевремя в США и Канаде доля кабелей с изоляцией из СПЭ составляет 85 %, вГермании и Дании -95 %, а в Японии, Франции, Финляндии и Швеции враспределительных сетях среднего напряжения используется только кабель сизоляцией из СПЭ.

2. Технология сшивки полиэтилена

Полиэтилен внастоящее время является одним из наиболее применяемых изоляционных материаловпри производстве кабелей. Но изначально термопластичному полиэтилену присущисерьезные недостатки, главным из которых является резкое ухудшение механическихсвойств при температурах, близких к температуре плавления. Решением этойпроблемы стало применение сшитого полиэтилена.

Своимиуникальными свойствами СПЭ кабели обязаны применяемому изоляционному материалу.Процесс сшивки или вулканизации на современных кабельных предприятияхосуществляется в среде нейтрального газа при высоком давлении и температуре,что позволяет получить достаточную степень сшивки по всей толщине изоляции.

Термин «сшивка»(вулканизация) подразумевает обработку полиэтилена на молекулярном уровне.Поперечные связи, образующиеся в процессе сшивки между макромолекуламиполиэтилена, создают трехмерную структуру, которая и определяет высокиеэлектрические и механические характеристики материала, меньшуюгигроскопичность, больший диапазон рабочих температур.

Существует три основныхспособа сшивки полиэтилена: пероксидная, силановая и радиационная. В мировойкабельной промышленности при производстве силовых кабелей используются первыедве.

Пероксиднаясшивка полиэтилена происходит в среде нейтрального газа при температуре 300-400°С и давлении 20 атм. Она применяется при производстве кабелей среднего ивысокого напряжений.

Силановая сшивкаосуществляется при более низкой температуре. Сектор применения этой технологииохватывал кабели низкого и среднего напряжений.

Первым российскимпроизводителем кабеля с СПЭ-изоляцией в 1996 году стал «АББ Москабель»,использующий технологию пероксидной сшивки. Впервые в России выпуск кабеля изсиланольносшитого полиэтилена в 2003 году освоен на Пермском ОАО «Камкабель».

Имеютсянекоторые особенности производства и эксплуатации таких кабелей.

3. Конструкция кабелей СПЭ.

В основном кабеливыпускаются в одножильном исполнении (), но выпускаются и втрехжильном исполнении (), а применение различных типов оболочек и возможность герметизациипозволяет использовать кабель как для прокладки в земле, так и для кабельныхсооружений, в том числе при групповой прокладке:

Оболочки кабелей с изоляцией из СПЭ

Аббревиатура

Области применения

Из ПЭ

прокладка на земле, в воздухе

Усиленная из ПЭ

Пу

прокладка на земле на сложных участках

Из ПВХ пластиката

в кабельных сооружениях, в производственных помещениях - в сухих грунтах

Из ПВХ пластиката пониженной горючести

групповая прокладка - в кабельных сооружениях - в производственных помещениях

Кабели с продольной герметизацией

г, 2г, гж (после обозначения оболочки)

для прокладки в грунтах с повышенной влажностью в сырых, частично затапливаемых помещениях

Дополнительные обозначения длякабелей с герметизирующими элементами в конструкции:

«г»-герметизация металлического экрана водоблокирующими лентами;

«2г»- поверхгерметизированного экрана алюмополимерная лента;

«гж» - втокопроводящей жиле используется водоблоки-рующий порошок или нити.

Конструкция кабеля с изоляцией из СПЭ для низкого и среднего напряжения:

1.Токопроводящая многопровочная уплотнительная жила:

Алюминий(АПвПг, АПвПуг, АПвВг, АПвВнг-LS, АПвПу2г);

Медь (ПвПг,ПвПуг, ПвВг, ПвВнг-LS, ПвПу2г).

2.Электропроводящий экран из силанольносшитой композиции полиэтилена.

3. Изоляция изсиланольносшитой полиэтилена.

4.Электропроводящий экран из силанольносшитой композиции полиэтилена.

5.Водоблокирующая электропроводная лента.

6. Экран измедных проволок.

7. Медная лента.

8.Разделительный слой:

Водоблокирующая электропроводная лента (АПвПу2г, ПвПу2г);

Бумагаэлектроизоляционная крепированная (АПвПг, ПвПг, АПвПуг, ПвПуг, АПвВг, ПвВг);

Лентаалюмополиэтиленовая (АПвПу2г, ПвПу2г).

9.Оболочка:

Поливинилхлоридный пластикат (АПвВг, ПвВг);

Поливинилхлоридный пластикат пониженной пожароопасности (АПвВнг-LS, ПвВнг-LS);

Полиэтилен (АПвПг, ПвПг, АПвПуг, ПвПуг, АПвПу2г, ПвПу2г).

Рис. 1 . Одножильный кабель СПЭ

Рис. 2 . Трехжильный кабель СПЭ

4. Особенности монтажа силовых кабелей с изоляцией из сшитогополиэтилена

1) Прокладка кабелей с изоляцией из сшитого полиэтиленарекомендуется при температуре окружающей среды не ниже 0 °С. Допускаетсяпрокладывать кабели с изоляцией СПЭ без подогрева при температуре окружающейсреды не ниже -15 °С для кабелей с оболочкой из ПВХ и пластиката -20 °С длякабелей с оболочкой из полиэтилена. При более низких температурах окружающейсреды кабель должен быть нагрет выдержкой в обогреваемом помещении не менее 48ч или при помощи специального устройства до температуры не ниже 0 °С, при этомпрокладка должна производиться в сжатые сроки (не более 30 минут). Послепрокладки кабель должен быть немедленно засыпан первым слоем грунта.Окончательную засыпку и уплотнение грунта производят после охлаждения кабеля.Прокладка кабелей при температуре окружающей среды ниже - 40 °С не допускается.

2)Минимальный радиус изгиба кабелей с изоляцией из сшитого полиэтилена припрокладке должен быть не менее 15 D н для одножильных и трехжильныхкабелей и 12 Dh для трех скрученных вместеодножильных кабелей, где Dh -наружный диаметр кабеля или диаметр по скрутке для трех скрученных вместеодножильных кабелей. При тщательном контроле изгиба, например, применениемсоответствующего шаблона, допускается уменьшение радиуса изгиба кабеля до 8 Dh . При этом рекомендуется подогрев кабеля в месте изгибадо температуры 20 °С.

3)Размотка кабеля с изоляцией из сшитого полиэтилена с барабана должнапроизводиться при применении необходимого количества проходных и угловыхроликов. Применяемый метод размотки должен обеспечивать целостность кабеля. Вовремя прокладки тяжение кабелей СПЭ должно осуществляться при помощи натяжногостального чулка, наложенного на наружную оболочку, или за токопроводящую жилупри помощи клинового захвата. Усилия, возникающие во время тяжения кабеля сизоляцией из сшитого полиэтилена с многопроволочной алюминиевой жилой, недолжны превышать 30 Н/мм 2 номинального сечения жилы, кабеля соднопроволочной алюминиевой жилой (с маркировкой «ож») - 25 Н/мм 2 ,кабеля с медной жилой - 50 Н/мм 2 . Если одновременно прокладываютсятри одножильных кабеля с одним общим стальным чулком, при расчете усилиятяжения учитывают:

1номинальных сечения жилы, если кабели скручены вместе;

2 номинальныхсечения жилы, если кабели не скручены.

Усилия тяжениякабеля при прокладке должны быть рассчитаны при проектировании кабельной линиии учтены при заказе кабеля. Тяговая лебедка должна быть оборудованаустройствами, позволяющими контролировать усилие тяжения кабеля, регистрироватьусилие тяжения в течение всего процесса тяжения кабеля и автоматическиотключать тяговую лебедку, если усилие тяжения превысит допустимую величину.

4) Кабели сизоляцией из сшитого полиэтилена СПЭ следует укладывать с запасом по длине 1 ¸ 2 %. В траншеях и на сплошных поверхностях внутри зданий и сооруженийзапас создается путем укладки кабеля «змейкой», а по кабельным конструкциям(кронштейнам) этот запас создается образованием стрелы провеса. Укладыватькабель в виде колец (витков) не допускается.

5) Металлические кабельные конструкции должны бытьзаземлены в соответствии с действующей документацией.

6) При прокладкекабельной линии кабели СПЭ трех фаз должны прокладываться параллельно ирасполагаться треугольником или в одной плоскости. Другие способы расположениядолжны быть согласованы с изготовителем.

7) При прокладкев плоскости расстояние в свету между двумя соседними кабелями одной кабельнойлинии должно быть не менее наружного диаметра кабеля СПЭ.

8) Прирасположении треугольником кабели скрепляются по длине кабельной линии (заисключением участков около муфт) на расстоянии 1 ¸ 1,5 м, на изгибах трассы - 1м. При прокладке в земле следует учесть, что при засыпке грунтом кабели недолжны менять своего положения. Кабели, проложенные в плоскости в кабельных сооруженияхна воздухе, должны быть закреплены по длине линии на расстоянии 1 ¸ 1,5 м. Скобы и другие крепежные изделия для крепления одножильныхкабелей СПЭ, а также крепление бирок на кабели должны быть выполнены изнемагнитного материала. При закреплении кабелей необходимо учитывать возможноетепловое расширение кабелей и механические нагрузки, возникающие в режимекороткого замыкания.

9) Все концыкабелей после отрезания должны быть уплотнены термоусаживаемыми капами дляпредотвращения проникновения влаги из окружающей среды. Во время прокладкикабелей должен быть обеспечен контроль состояния оболочек и защитных кап.

5. Способы прокладки кабелей

Кабели сизоляцией из полиэтилена могут прокладываться в земле (траншее), в кабельныхсооружениях (туннели, галереи, эстакады), в блоках (трубах), в производственныхпомещениях (в кабельных каналах, по стенам).

При прокладкекабелей в земле рекомендуется в одной траншее прокладывать не более шестикабелей. При большем количестве кабелей рекомендуется прокладывать их в отдельныхтраншеях. Прокладка кабелей может осуществляться одиночными кабелями, так исоединенными в треугольник.

Прокладкакабелей в туннелях, по эстакадам и галереям рекомендуется при количествекабелей, идущих в одном направлении более двадцати. Прокладка кабелей в блокахприменяется в условиях большой стесненности по трассе, в местах пересечений сжелезнодорожными путями и проездами, при вероятности разлива металла и т.п.

При прокладке пометаллоконструкциям возможно использование различных видов креплений в видескоб, клиц или узлов крепления.

Примеры крепления кабеля с применением скоб (рис. , , ).

Все размеры даныв миллиметрах. Крепежные изделия (болты, гайки, шайбы) не показаны.

D - наружный диаметр кабеля, S - толщина прокладки (от 3 до4 мм).

Рис. 3 . Крепление одного кабеля

Обозначения:

1 -кабель; 2 - хомут (скоба) из алюминия или алюминиевого сплава; 3 - прокладка изрезины или поливинилхлорида .

Рис. 4 . Крепление трех кабелей в связке (в треугольник)

Обозначения:

1- кабель; 2- хомут (скоба) из алюминия или алюминиевогосплава толщиной 5 мм; 3 - прокладка из резины или поливинилхлорида толщиной 3¸ 5мм.

Рис. 5 . Крепление трех кабелей

Обозначения:

1- кабель; 2- хомут (скоба) из алюминия или алюминиевогосплава; 3- прокладка из резины или поливинилхлорида.

6. Технология прокладки кабеля

Прокладку кабеляосуществляет бригада в количестве 5-7 человек.

Примерная схемарасстановки рабочих при протяжке кабеля:

Барабан, натормозе - 1 человек;

Сход кабеля сбарабана - 1 человек;

Спуск кабеля втраншею (вход, выход из туннеля) - 1 человек;

На лебедке - 2человека;

Сопровождениеконца кабеля - 2 человека.

Кроме того,необходимо предусмотреть по одному человеку:

На каждом углуповорота;

На каждом проходев трубах через перегородки или перекрытия, у входа в камеру или здание.

Приодновременном тяжении трех кабелей за устройством для группирования кабелейдолжны находиться 2 человека для скрепления кабеля в треугольник.

Скоростьпрокладки не должна превышать 30 м/мин и должна выбираться в зависимости отхарактера трассы, погодных условий и усилий тяжения.

При превышениидопустимой величины усилия тяжения необходимо остановить прокладку и проверитьправильность установки и исправность линейных и угловых роликов, наличие смазки(воды) в трубах, а также проверить кабель на возможное заклинивание в трубах.Дальнейшая протяжка кабеля возможна только после устранения причин превышениядопустимых усилий тяжения.

При спускекабеля в траншею или входе в туннель необходимо следить, чтобы кабель несоскальзывал с роликов и не терся о трубы и стенки в проходах. На входе в трубынеобходимо следить за тем, чтобы не повреждались защитные покровы кабелей окрай трубы.

При поврежденииоболочки кабеля необходимо остановить прокладку, осмотреть место повреждения ипринять решение о способе ремонта оболочки.

Сопровождающиеконец кабеля должны следить за тем, чтобы кабель шел по роликам, принеобходимости подправляют ролики, а также направляют конец кабеля.

Кабельвытягивается таким образом, чтобы при укладке его по проекту расстояние отверха концевой муфты или от условного центра соединительной муфты было не менее2 м. При определении запаса следует учитывать, что остатка кабеля на барабанедолжно хватить для монтажа муфты. Отсоединить тяговый трос и снять чулок илизахват с конца кабеля. В случае, если на барабане находится кабель длянескольких участков трассы, или если длина кабеля существенно больше длиныучастка, необходимо обрезать кабель.

После обрезкикабеля необходимо герметизировать концы кабелей капированием. Для болеенадежной герметизации концов кабелей возможно применить двойное капирование.Внутреннюю капу осадить на электропроводящий слой по изоляции кабеля, анаружную капу - на внутреннюю капу и на оболочку кабеля. Возможно, также передкапированием нанести на обрез кабеля слой расплавленного битума.

Принеобходимости концы кабеля завести в камеры, колодцы, кабельные помещения. Приэтом необходимо соблюдать допустимые радиусы изгиба кабеля. Снять кабель с роликов,уложить и закрепить его по проекту.

При прокладке втраншее произвести присыпку кабеля песчано-гравийной смесью или мелким грунтомтолщиной не менее 100 мм и провести испытания оболочки кабеля.

Журнал «Ценообразование исметное нормирование в строительстве», ноябрь 2010 г. № 11

← Вернуться

×
Вступай в сообщество «export40.ru»!
ВКонтакте:
Я уже подписан на сообщество «export40.ru»